Copyright (C) 1987 Cesar Quiroz

1.1 Generalities

This section tells you want you need to know about the routines in the file c1.el, so that
you can use them. The distribution also includes this documentation and perhaps a few
example files.

1.1.1 License, Availability, Maintenance

These files are covered by the GNU Emacs General Public License (if you don’t know its
terms, try C-h C-c) and the statement of no warranty (again, you can type C-h C-w if you
don’t know its terms) also applies to them.

I, Cesar Quiroz, the original author of the software described here, will appreciate hearing
about bug reports (and fixes), suggestions and comments, applying both to the code and
to this documentation. I don’t promise to act on those communications, but whenever they
might conduce to improvements of this software, I will make those improvements available
to the general community through the Free Software Foundation. You can reach me at the
following net addresses:

quiroz@seneca.cs.rochester.edu quiroz@rochester.arpa {allegra | seismo | ...
} ! rochester | quiroz CSNET: Cesar Quiroz at node Rochester

1.1.2 Purpose and Limitations
These routines were written with two purposes in mind:

1. To make programming in Emacs Lisp even more compatible with Common Lisp. In-
deed, my original motivation was to have a do macro.

2. To facilitate to novice Lisp programmers a chance to practice with features commonly
found only in expensive implementations of Lisp.

In order to satisfy these purposes, the routines were written in such a way that it is
practical to use them inside Emacs: no effort was given to implement features that could
slow down the host Emacs unnecessarily nor require recoding of the Emacs Lisp interpreter.

For instance, no support is given to floating point arithmetic.

So, I have tried to implement a subset of the functionality of Common Lisp. Whatever
is implemented, has syntactic and semantic properties like the equally named features of
Common Lisp, but not all the relevant features have been implemented (see Section 1.12
[To Do], page 11, for some suggestions). When deciding what to include, I have tried to
strike a balance between these constraints:

1. Keep it simple, I didn’t want to spend much time in this idea.
2. Keep it compatible with Common Lisp.

3. Keep it flexible, so my code doesn’t oppose a better implementation (when this looked
hard, I just didn’t implement the feature).

4. Keep an eye on the intended use of Emacs Lisp: to support an advanced editor. I don’t
expect that more arithmetic support will be as conducive to this goal as having better
iterations and conditionals will.

For background, the reference is “Common Lisp: The Language” by Guy Steele Jr.
(Digital Press, 1984). For all the features described here you can assume that the intent
has been to provide the syntax and semantics of the features of like name in the book. For
the most part, this documentation will concentrate on how my routines fail to implement
Common Lisp faithfully.

1.1.2.1 Specific Limitations

Emacs Lisp and Common Lisp differ enough to make some of the emulation difficult, ex-
pensive or nearly impractical. Some specific limitations are stated here:

1. Common Lisp is lexically scoped (mostly), while Emacs Lisp is dynamically scoped.
Things like block, return, tagbody are then practically impossible to imitate cor-
rectly (in principle, rewriting eval, apply and a couple of other functions would suf-
fice, problem is that such rewriting amounts to a new interpreter on top of the old.)
Things like ‘implicit-blocks’, ‘implicit-tagbodies’ and the like have not been im-
plemented at all. Where they are needed, the most you can assume is that I tried to
put ‘implicit-progns’ around places where it made sense.

2. Emacs Lisp’s 1lambda does not support all the possible argument markers. Similarly,
defmacro doesn’t support automatic destructuring of the calls. An approximation to
a keyword-based calling style was implemented, mainly for the sake of defstruct, but
is not general enough.

3. Emacs Lisp supports arithmetic only on integers.

4. Emacs Lisp doesn’t support many of the basic types of Common Lisp. In particular,
there are no arrays beyond vectors and strings (although these ones are compatible),
characters are essentially small integers, etc.

5. There are no declarations in Emacs Lisp (in the sense of Common Lisp’s declare,
proclaim, ...) nor there is a explicit lattice of types. These limitations could be
effectively overcome from Lisp code (to a extent), but I don’t see them as a very
pressing need, if a need at all in Emacs Lisp. defstruct can be used to generate new
types that can be recognized at runtime.

6. The Emacs Lisp reader is not programmable. The syntax it accepts is almost standard,
but it preempts ’?’ as a dispatching macro of sorts. The format function is incompat-
ible with Common Lisp. There isn’t a ‘quasi-constant’ notation (the usual backquote
of Common Lisp). None of these differences causes any problems when writing Emacs
Lisp (although the lack of backquoting is felt sorely), but they oppose a Common Lisp
emulation.

1.1.3 Loading and Compiling

The file c1.el provides the ‘c1’ feature, you can use this to test whether these routines have
been loaded, or to load them from your code (by means of (require ’c1)). The compiled
file is a little larger than 50K bytes.

If you need to recompile the sources, make sure you load them first on the Emacs that
will do the recompilation. This is because many syntactic characteristics (like the special
forms) have been implemented as macros and you need to make sure that macros are known
to the compiler before they are used.

These extensions work correctly when interpreted in a GNU Emacs of version 17.64
or beyond. Compiling them requires a more recent byte compiler, preferably one strictly
younger than version 18.XX.

1.1.4 On Line Help

The routines in this file have documentation strings, so you can (and should) consult them
for the exact syntax allowed. That information is not repeated in this manual. Some of
the routines are also documented explicitly in the Common Lisp reference, their doc-strings
begin with ‘[c1]’ to represent this fact.

The rest (those without the ‘[c1]’ mark) are auxiliary functions or macros used by the
rest of the implementation. They are not constrained by any standard and are advertised
only in as much as they can be useful in other applications.

Each of the following sections contains a subsection called ‘Features Provided’. It lists
briefly the user-visible features of this implementation. In its entries, names by themselves
refer to functions. Macros and variables are identified by a ‘MACRO’ or a ‘VARIABLE’
ahead of their names.

1.2 Symbols

The most important omission is that of a packages mechanism. (For a possible imple-
mentation, see Section 1.12 [To Do, page 11) Whenever a Common Lisp function expects
a package, I have substituted an obarray. There is a hack to have pseudo-keywords, see
below.

There are two other notorious omissions over which I haven’t lost any sleep. The first
is the lack of a remprop function, which could be easily provided if needed. The second is
the lack of ways to modify the print name of a symbol. This one would probably be good
only to introduce strange bugs, so I don’t miss it.

1.2.1 Features Provided

VARIABLE *gensym-index*

VARIABLE *gensym-prefix*

VARIABLE *gentemp-index*

VARIABLE *gentemp-prefixx*
These variables are used to keep the state of the generator of new names. Better
leave them alone.

gensym
gentemp These do the same as the Common Lisp names of like names.
MACRO defkeyword

keyword-of
keywordp These provide the pseudo-keywords implementation.

1.2.2 Keywords

The lack of packages makes it difficult to implement keywords correctly. I have provided a
macro defkeyword that takes a symbol and makes sure it evaluates to itself. (So, it is like

defconst.) If your programs ever need keywords, put a bunch of calls to defkeyword at
the beginning of your code, so when loaded they will be in effect.

The (standard) predicate keywordp tests to see if the given symbol’s name begins with
a colon and then ensures that it evaluates to itself.

The function keyword-of takes a symbol and returns a keyword of like name.

(keyword-of ’foo)
:foo
(keyword-of ’:bar)
:bar

This feature was added mainly to support defstruct and the tests of the sequence
functions. It is fragile and easy to fool.

1.2.3 New Symbols

A common need (especially when writing macros) is to be able to invent new names for
things. I provide the gensym and gentemp functions. The global state needed is kept in the
variables *gentemp-index*, *gentemp-prefix*, *gensym-index* and *gensym-prefixx*.
Changing them, especially the index ones, is a very bad idea. I am not providing the
Common Lisp default prefixes ("G’ for gensym and T’ for gentemp) because of debugging
paranoia. My default prefixes are harder to come by when giving sane names to things.

1.3 Lists

Lists (indeed, conses) are so deeply involved in Lisp that there seems to be little need to
justify improving the list handling of a Lisp.

Common Lisp, however, is a rather huge Lisp. I haven’t provided all the functions in
the chapter of lists, mainly because some of them could be implemented correctly only if
keyword arguments were supported. That explains why I haven’t rushed to provide subst,
sublis, etc. Also, that explains the rather temporary nature of the implementation of
member and adjoin. I will welcome any efforts to extend this work.

1.3.1 Features Provided

endp

listx*

list-length
Very standard utilities. List* has proven especially useful to overcome the lack
of a real backquote. In addition, things that usually required the relatively
clumsy

(cons ’a (cons ’b oldlist))
(append (list a b) oldlist)

can now be simply put:
(list* ’a ’b oldlist)

See also acons.

member Another well known function. Supports test with eql only.

acons
pairlis These two are part of the standards association lists implementation. I am
leaving sublis as an exercise for the reader.

adjoin Done mainly for the sake of pushnew.

butlast

last

1diff Occasionally useful ways to access the last cons or a specified tail of a list. I

don’t remember why there isn’t a tailp here.

c[ad] [ad] [ad] [ad]r, up to four a’s or d’s
These 28 functions (and their setf inverses) have been provided once and for
all. Many packages contributed to Emacs Lisp contain macros that implement
some of these, I think this code will make most of them unnecessary.

first

rest

second

third

fourth

fifth

sixth

seventh

eighth

ninth

tenth More standard accessors (and their setf inverses). Not particularly useful but
easy to provide.

setnth

setnthcdr
These functions are non-standard. They are here for defsetf purposes only,
but they might be useful on their own.

1.4 Sequences

Sequences are partly supported in Emacs Lisp (see, for instance, the elt function). This
limited support is compatible with Common Lisp, so it should be easy to extend. However,
the lack of keyword arguments makes many of the functions impossible so far (but, as
mentioned below, a basic framework for that extension is provided here).

The functionality really provided here is given by the functions (essentially, predicates)
every, some, notevery, notany. I have found them useful countless times, so I thought to
provide them before anything else.

That still leaves many omissions, though.

1.4.1 Features Provided

every

notany

notevery

some Extremely useful functions. If your favorite Lisp doesn’t have them, you are
missing a lot.

setelt A setf-inverse to elt.

add-to-klist

build-klist

extract-from-klist
A klist is just an alist whose keys are keywords. I based the pseudo-keyword
argument support of defstruct on this idea, but their best fit is here, as
they could help to write the remaining sequence-handling functions (find,
substitute, ...) that I didn’t provide for the lack of a good keyword ar-
guments mechanism.

elt-satisfies-if-not-p

elt-satisfies-if-p

elt-satisfies-test-p

elts-match-under-klist-p
The Common Lisp book defines some of the semantics of sequence functions in
terms of satisfaction of certain tests. These predicates provide that functional-
ity, but I haven’t integrated them with the rest of the extensions. However, 1
thought it was better to include them anyway, as they can serve somebody else
as a starting point.

1.5 Conditionals

An elementary incompatibility prevents us from producing true Common Lisp here. The
if forms are different. In Emacs Lisp, if can take any number of subforms, there being
a condition form, a then form, and after them any number of else subforms, which are
executed in an implicit progn. Moreover, that style is widely used in the Emacs sources, so
I thought most impractical to break with it to support Common Lisp’s if (where only one
else form is tolerated). For the most part, I use cond almost always, so it doesn’t bother
me much. If you use single-branch ifs often, consider when or unless as alternatives.

case and ecase are a convenient way to write things that usually end up in a very
baroque cond.

1.5.1 Features Provided

MACRO case
MACRO ecase
MACRO unless
MACRO when
The standard stuff, completely implemented.

1.6 Iterations

Having a do macro was my original motivation. The alternatives in standard Emacs Lisp
are either expensive (recursion) or correspond directly to the expansion of my macros:

(macroexpand ’
(do ((1 0) (1 (+13N
((> j (foo i)) (cons i bar))
(setq i (baz i j))))

(let ((1 0) (G 1))
(while (not (> j (foo 1)))
(setq i (baz i j))
(psetq j (+ 1 D))
(cons i bar))
So I prefer to leave to the macros the problem of remembering the details right.

The incompatibilities are due to the problems already discussed (see Section 1.1 [Gen-
eralities], page 1, for more details).

If you write Emacs Lisp code often, you will find enough uses for these. Examples
are cooking up a translation table to move C-s out of the way of multiplexers, switches,
concentrators and similar fauna, or building keymaps.

1.6.1 Features Provided

MACRO do
MACRO do*
MACRO dolist
MACRO dotimes
The standard, but for the lack of implicit blocks.

MACRO loop
The basic standard one, not the fancy one. As per the book, warns you about
atomic entries at the surface of the macro (to guarantee that the fancy loop
macros can be made standard later).

MACRO do-all-symbols
MACRO do-symbols
These operate on obarrays, the default is the current one.

1.7 Multiple Values

The multiple values mechanism covers (simply and elegantly, in my opinion) various common
needs:

1. The case where a function returns a composite value, that has to be assembled in the
callee and disassembled in the caller. An example is pair-with-newsyms.

2. The case where a function might cheaply compute redundant information that is use-
ful to the caller only eventually. For instance, routines that compute quotients and
remainders together, whose callers might be more often interested in just receiving the
quotient.

3. The case of functions that usually return a useful value, but might need to elaborate
on occasion (say, returning a reason code t00).

The general idea is that one such function always returns the extra values, but only
callers that are aware of this ability receive them. Unaware callers just receive the first
value.

I think my implementation is pretty much complete. I am imposing no limits on the
number of multiple values a function may return, so I am not providing the constant
multiple-values-limit. You can assume multiple values are bound by the memory size
only.

1.7.1 Features Provided

values
values-list
These are the forms that produce multiple values.

MACRO multiple-value-bind
MACRO multiple-value-call
MACRO multiple-value-list
MACRO multiple-value-progl
MACRO multiple-value-setq
These are the forms that receive multiple values.

VARIABLE *mvalues—countx*
VARIABLE *mvalues-values*
Used by the implementation. Don’t touch them!

1.8 Integer Arithmetic

I have provided most of the functions that are supposed to act on integers. Of those that
take arbitrary numbers, I have implemented those that have a reasonable implementation
if restricted to integers only, although some more could be added (like a restricted form of
expt).

Being a little worried about the bad fame that affects some implementations of the
"%’ C operator, I have taken perhaps unnecessary precautions whenever integer division
is concerned (see the function safe-idiv). This should be of interest only when dividing
numbers that might be negative, but I have preferred here to be safe rather than fast.

1.8.1 Features Provided

abs

signum The usual.

gecd

lcm The usual.

isqrt A rather annoying function. Only use I can think of: to cut short a prime

number sieve.

evenp
oddp

plusp
minusp A few predicates that use to come handy.

cl-ceiling

cl-floor

cl-round

cl-truncate

mod

rem The intention is to give everybody his preferred way to divide integers. I have

tried not to depend on the unreliable semantics of C’s integer division, I hope
I got it right. Read the code when in doubt.

1.9 Generalized Variables

This implementation has many limitations. Take a look to see if you want to overcome
them, the fixes might prove unnecessarily expensive for Emacs purposes. The ones I am
clearly aware of:

1. Common Lisp suggests an underlying mechanism (the setf-methods) to implement gen-
eralized variables. I have used ad-hoc ideas that gave me a rather trivial implementation
that suffers from some inflexibility. As a result, defsetf only admits the simplest form
and there is no define-modify-macro nor there are functions to handle the (nonexis-
tent) setf-methods.

2. T haven’t implemented (I was uninterested) getf and friends. This shouldn’t be hard.

In addition to providing this mechanism, I have written defsetfs for almost every
accessor I thought of. There is room for improvement here, as Emacs Lisp provides many
types of its own (buffers, windows, keymaps, syntax tables, . . .) for which pairs of accessors
and mutators could be defined.

If you want to check whether a function has a setf-inversor, look at the property ‘:setf-
update-fn’ of its name. This is a characteristic of my implementation, not mandated by
Common Lisp, so you shouldn’t use it in code, but only to determine interactively what
can be setf’d.

1.9.1 Features Provided

MACRO setf

MACRO psetf
Almost complete implementation. Setf should handle apply inside itself and
not in a defsetf, but the difference is so minute I feel lazy about fixing this.
Psetf is the version where the assignments occur in parallel.

MACRO defsetf
Very sketchy implementation. I will appreciate if somebody puts some time in
implementing the whole works of setf-methods and such.

MACRO incf

MACRO dect
The usual and standard.

MACRO pop
MACRO push
MACRO pushnew
Should be the usual, but I haven’t had the time to test them properly.

MACRO rotatef

MACRO shiftf
Very fancy. Good for implementing history rings and such. To swap two values,
the following forms are equivalent:

(rotatef a b)
(psetf a b b a)
(psetq a b b a) ;not good for anything but variables

1.10 Structures

I haven’t had the time to construct a complete implementation of structures, but the part
provided should stand on its own for many purposes. I am not supporting ‘BOA con-
structors’, nor typed slots (the :type, :named and :initial-offset options), nor explicit
representational types. The rest should be pretty much complete. See the example file
fractions.el for an idea of how complete the implementation is, and for exercises.

When writing these functions, I noticed I was incurring in lots of auxiliaries. I used
dollar signs in their names, in the hope that this could prevent clashes with user functions.
In retrospect, I should have done it in the other sections, too.

1.10.1 Features Provided

MACRO defstruct
Create records (a la C structs) and use them as types in your programs. Almost
completely standard.

make$structure$instance
This non-standard function implements most of the ‘guts’ of the ‘make-’ con-
structors. It can be used as an example of the pseudo keyword-arguments.

1.11 Miscellanea

1.11.1 Features Provided

MACRO psetq
A parallel-assignments version of setq, makes the expansions of do and do* be
very similar, as they should. Otherwise used to swap two values, now superseded
by rotatef.

duplicate-symbols-p

pair-with-newsyms

reassemble-argslists

unzip-list

zip-lists
These are utilities I find useful when parsing a call or generating code inside a
macro. Non standard.

1.12 To Do

No doubt many people will like to extend the functionality of these routines. When con-
sidering doing so, please try and do it in such a way that your implementation of a subset
of the functionality of Common Lisp is not inimical with a more extensive or more correct
one. For definiteness, ask yourself the questions:

e Will my code run under a correct implementation of Common Lisp?

o Will a correct implementation of Common Lisp run if my code is loaded?

The first question tests the pertinence of your extensions. The second tries to discover
“extensions” that prevent correct implementations of other features. Please tell me if you
notice a case in which my code fails to pass any of those tests.

The next subsections propose some more extensions. I hope that they are attempted by
people learning Lisp, as a way to enhance their understanding. Of course, experts are also
admitted.

1.12.1 Keyword Arguments

Some effort has been done to handle keywords almost right. For instance, a structure
constructor (see Section 1.10 [Structures], page 10) can be invoked with keyword arguments.

Look for the functions whose names have a ‘klist’ in them. They were written to facil-
itate parsing calls with keyword arguments, but I haven’t done a complete implementation
yet. (Note that member, assoc and perhaps some other function, have to be implemented
independently of the general framework. More details by Email if you want to try your
hand at this.)

1.12.2 Mapping Functions

There is enough support to write maplist, mapl, etc. Emacs Lisp already provides some of
the mapping functions, the trick now is to code the rest in a very efficient manner, so there
will be an incentive to use maplist over an explicit iteration. I have a draft implementation,
but I don’t have the time to test it now.

1.12.3 Complete the current implementation

Some of the features described above are only a partial implementation of the Common
Lisp features. Things that cry for a more complete form:

defsetf Only the simplest format is supported. The most general one is needed too.
Also, try to get define-setf-method and get-setf-method to work.

define-modify-macro
Same as above. The modify-macros provided are all ad hoc.

defstruct
I think my version recognizes all the options and then proceeds to ignore most
of them. Making sure that at least good error messages are produced would be
nice. Also, what about BOA constructors?

There are other places where your programming ingenuity would help us all. For in-
stance, subst, sublis and the like could be easily provided in the lists section. (I haven’t
done it because I wanted to have the keyword arguments stuff first.)

1.12.4 Hash Tables

A very simple implementation of hash tables would admit only strings as keys. For each
string and a given number of buckets (a prime is desirable here), add the numeric values of
all (or of a reasonable subset) of the characters and assign the bucket whose index is the
remainder of the sum modulo the (prime) number of buckets.

A more convenient implementation can then be based on using prini-to-string on
an arbitrary Lisp object and using the output string as a key. This should make it easy
to write sxhash. Remember that one needs to ensure that (equal x y) should imply that
(= (sxhash x) (sxhash y)); and also that the keys are state-less (so you can write them
to a file and read them back later).

Don’t forget to provide a defsetf for gethash.

1.12.5 Packages

Packages should be easy to implement on top of a good hash table implementation, either
by using it directly or by reusing some shared code. Don’t worry too much about efficiency:
package qualification has no run-time cost, only read- and print-time costs.

The difficult thing is to integrate it correctly. You have to replace the built-in functions
read and write. This is not as bad as writing a programmable reader, but still a pain.
For starters, your routines could remember the default definitions of the above mentioned
functions:

(setf def-reader (symbol-function ’read))
(setf def-printer (symbol-function ’print))

And then your specialized functions could just use apply to exercise the default ones,
intercepting their activity in time to do the package qualification. You might have to do
this to prinl, prinl-to-string and friends.

1.12.6 Streams and Files

This is the first “To Do” that might require doing some C programming. The purpose is
to construct an efficient byte stream abstraction that will allow Streams and Files to be
handled. Think of stdio, not Unix I/O, because Emacs already runs under other operating
systems. Also, think of doing it in a way that can be generalized easily (for instance, streams
kept in memory without a file behind, streams as an interface to a windowing system, etc.)
Of course, the intended syntax is that of Common Lisp.

1.12.7 Reader and Printer

The Emacs Lisp reader (the C function Fread) is not reentrant nor programmable. It could
be fixed as Lisp Code, but that is probably uglily expensive (as bad as redoing eval and
apply to support lexical scoping). Doing this extension is probably a bad idea: a Common
Lisp reader is incompatible with Emacs Lisp code (because of the ‘?\’ constructions) and
the most important rule to keep in mind is that this code is running under Emacs, so the
host shouldn’t be burdened too much with these emulations. Same goes for a more complete
printer (a Common Lisp format would be incompatible with the Emacs Lisp one).

1.12.8 Backquote

Even if the reader is not made programmable nor reentrant, a backquoting mechanism could
come handy. You need to study the way the current reader does quote and hack from there.
This might be a more worthwhile extension than the complete rewrite of the reader.

1.12.9 Wild Ideas

Perhaps there is a way to implement block, tagbody, return and friends in spite of the
dynamic scoping of Emacs Lisp. By this, I mean an adequate definition that preserves
remotely the original intent and still provides a sensible set of constructs. Other dynamically
scoped Lisps have these features, so implementing them is not necessarily impossible.

In the same spirit of these extensions would be to provide a port of something like
Flavors (was there a PD version from Maryland, for Franz perhaps?) and then rephrase
the language of major and minor modes in an Object Oriented paradigm.

Also, the rather gross loop macros that are out there in many Lisp systems could be
helpful to some people (but then think of a 1isp-indent-hook that handles them properly).

